Contenido

Sección I
1. Historia de la cirugía de cadera .. 1
 Leonard F. Peltier

Sección II • Fundamentos científicos
2. Desarrollo pre- y posnatal de la cadera 28
 Timothy M. Ganey • John A. Ogden

Anatomía
3. Anatomía de la cadera ... 43
 Ray C. Wasielewski
4. Anatomía artroscópica de la cadera 58
 Bryan T. Kelly • Marc J. Philippon
5. Biomecánica de la cadera .. 70
 James D. Johnston • Philip C. Noble
 Debra E. Hurwitz • Thomas P. Andriacchi
6. Cinemática de la cadera .. 79
 Richard D. Komistek • Douglas A. Dennis
 Mohamed R. Mahfouz

Biomateriales
7. Revisión de los biomateriales ... 89
 Jonathan Black • Brett Levine • Joshua Jacobs
8. Cerámicas .. 99
 Jack E. Lemons
9. Polietileno en la sustitución completa de cadera 103
 Roy D. Crowinshield
 Orhun K. Muratoglu • Michael Hawkins
10. Metales ... 113
 Jeremy L. Gilbert
11. Cemento óseo ortopédico ... 128
 Anuj Bellare
12. Técnicas de ingeniería para el diseño y evaluación del implante ... 139
 Thomas D. Brown
13. Escenarios de fallo y ciclos de innovación 149
 Rik Huiskes • Nico Verdonschot
14. Fijación con metilmetacrilato ... 165
 Andrew D. McDowell • Donald W. Howie
15. Fijación por osteointegración .. 175
 Murali Jasty • Heino Kienapfel • Peter Griss

16. Remodelado óseo alrededor de los implantes de cadera 185
 Charles A. Engh • Christi J. Sychterz
 James Keeney • William Maloney

Desgaste y sus consecuencias
17. Tribología .. 193
 Markus A. Wimmer • Alfons Fischer
18. Valoración del desgaste: mecánica 204
 Orhun K. Muratoglu • Ebru Oral
19. Valoración clínica del desgaste 215
 John M. Martell
20. Superficies de carga ... 224
 Mauricio Silva • Christian Heisel
 Harry McKellog • Thomas P. Schmalzried
21. Partículas de desecho .. 248
 Harlan Levine • W. Timothy Ballard
 Arun Shanbhag • Joshua J. Jacobs
22. Respuesta biológica a los desechos de desgaste: interacciones celulares causantes de osteólisis 256
 Arun S. Shanbhag • Manish K. Sethi
 Harry E. Rubash

Biología del injerto óseo
23. Autoinjertos .. 271
 Victor M. Goldberg • Jean Welter
24. Aloinjertos .. 280
 D. Luis Muscolo • Miguel A. Ayerza
 Victor M. Goldberg
25. El papel de los sustitutos del injerto óseo en la artroplastia completa de cadera ... 293
 Wellington K. Hsu • Jay R. Lieberman

Sección III • Fundamentos clínicos

Evaluación de la cadera
26. Historia clínica y examen físico 304
 Steven A. Purvis • Seth S. Leopold
27. Evaluación radiográfica de la cadera 311
 Derek R. Armfield • Jeffrey D. Towers
28. Imagen con radioisótopos .. 352
 Robert H. Fitzgerald, Jr. • Lawrence P. Davis
 Dheeraj K. Rajan
Contenido

29. Resonancia magnética .. 369
 Hollis G. Potter • Ian Tsou

Patología de la cadera

30. Secuelas de la patología pediátrica de cadera 382
 Stuart L. Weinstein

31. Enfermedades sistémicas que cursan con patología de cadera .. 404
 John W. Barrington • Paul F. Lachieeicz

Osteonecrosis de cadera y patología relacionada

32. Osteonecrosis: etiología, evolución natural, fisiopatología y diagnóstico 417
 Roy K. Aaron • Robert R. L. Gray

33. Osteonecrosis: estrategias de tratamiento ... 429
 Michael A. Mont • Hari P. Bezwada

34. Cadera neuromuscular .. 451
 Rafael J. Sierra • Miguel E. Cabanela

35. Enfermedades óseas metabólicas 464
 Eric G. Bonenberger • Thomas A. Einhorn

36. Tumores primarios y patología seudotumoral de la cadera 482
 Erik N. Zeegen • Philip Z. Wirganowicz
 Francis P. Cyran • Jeffrey J. Eckardt

37. Enfermedad metastásica de la cadera 506
 Joseph H. Schwab • Patrick J. Boland

38. Artritis y patologías similares 518
 Calvin R. Brown, Jr.

39. Artritis séptica .. 530
 Michael R. O’Rourke • Marnold T. Berman
 Louis Quarataro

40. Trastornos de los tejidos blandos próximos a la cadera 542
 Michael J. Archibeck

41. Tratamiento no quirúrgico de la osteoartritis de cadera 548
 David S. Hungerford
 Marc W. Hungerford

Consideraciones perioperatorias

42. Evaluación médica preoperatoria 558
 Anthony B. Fiorillo • Francis X. Solano, Jr.

43. Anestesia .. 573
 Nigel E. Sharrock

44. Conservación de la sangre en la cirugía de cadera 582
 Bernard N. Stulberg • Joseph Thomas

45. Tromboembolismo venoso después de una artroplastia total de cadera 593
 Brian T. Feeley • Jay R. Lieberman

46. Cuidados de enfermería en el paciente con sustitución de cadera 609
 Regina M. Barden
 Michaelene Abran

Anatomía y abordajes quirúrgicos

47. Abordajes quirúrgicos 620
 William A. McGann

Sección IV • Alternativas a la artroplastia

48. Artroscopia 669
 Joseph C. McCarthy • Jo-Ann Lee

49. Artroplastia de resección 683
 Thomas A. McDonald
 Steven F. Schutzer

50. Artrodesis .. 693
 John J. Callaghan

51. Osteotomia: revisión 703
 Robert T. Trousdale • Dennis Wenger

52. Osteotomia femoral proximal 710
 John C. Clohisy • Perry L. Schoenecker

53. Osteotomia periacetabular 723
 Michael B. Millis • Stephen B. Murphy

54. Osteotomías innominada triple de Steel y de Chiari 743
 Maurice Albright

Sección V • Artroplastia total de cadera

55. Aspectos económicos de la artroplastia total de cadera 753
 Kevin J. Bozic • Khaled J. Saleh
 Carlos J. Lavernia • Javad Parvizi

56. Investigación de los resultados en ortopedia: análisis 760
 Khaled J. Saleh • Javad Parvizi
 Kevin J. Bozic • David A. Heck

57. Decisiones clínicas y coste-eficacia de la artroplastia total de cadera 767
 John F. Tilzey • Richard Iorio
 William L. Healy

Artroplastia total de cadera primaria

58. Artroplastia primaria de cadera: indicaciones y contraindicaciones 775
 Craig J. Della Valle • Aaron G. Rosenberg
59. Clasificación de las pérdidas óseas acetabular y femoral en la artroplastia total de cadera .. 783
 Susan E. Barrett • Harry E. Rubash

60. Planificación preoperatoria .. 806
 Robert L. Barrack • R. Stephen • J. Burnett

61. Principios generales de la técnica quirúrgica 833
 Kevin L. Garvin

62. Componente femoral cementado 839
 William J. Maloney • Michael N. Kang
 James M. Hartford

63. Acetábulo cementado: fundamentos y técnica 859
 Amar S. Ranawat • Chitranjan S. Ranawat

64. Componente acetabular no cementado 864
 Christopher L. Peters • Michael D. Miller

65. Resuperficialización total de cadera 886
 Thomas P. Schmalzried • Vincent A. Fowble
 Rudi G. Bitsch • E. S. Choi

Componentes femorales primarios no cementados

66. Componentes femorales no cementados: modulares 897
 Douglas A. Dennis • Christopher B. Lynch

67. Componentes femorales no cementados ampliamente recubiertos 906
 William D. Bugbee • Charles A. Engh

68. Cubierta de hidroxiapatita 922
 William N. Capello • Michael T. Manley
 James A. D’Antonio • Judy R. Feinberg

69. Vástago de endocrecimiento proximal 930
 David W. Manning • Torey P. Botti
 Harry E. Rubash

70. Componentes femorales cónicos 940
 Constant A. Busch • Robert B. Bourne

71. Componentes femorales de ajuste a presión 950
 J. David Blaha • Todd A. Borus

72. Diseño a medida e inserción robótica de prótesis femorales no cementadas 958
 William L. Bargar

73. Navegación quirúrgica para la artroplastia total de cadera 967
 Anthony M. DiGioia III • Sorin Blendea
 Branislav Jaramaz

74. Cadera asiática ... 974
 Nobuhiko Sugano • Tukashi Nishii
 Masaki Takao

75. Necrosis avascular de la cabeza femoral: la experiencia coreana 990
 Shin-Yoon Kim • Harry E. Rubash

Complicaciones después de la artroplastia total de cadera

76 Complicaciones precoces y su tratamiento 998
 Christopher E. Selroth • Craig G. Mohler
 Dennis K. Collis • William A. Jiranek

77. Complicaciones tardías y su tratamiento 1018
 Michael R. O’Rourke • Ajay Aggarwal
 B. G. Evans

Sección VI • Artroplastia total de cadera compleja

78. Artroplastia total de cadera en el tratamiento de la artritis secundaria a la displasia del desarrollo de cadera 1029
 William H. Harris • Brett J. Hampton

79. Sustitución acetabular primaria compleja 1044
 Thomas Parker Vail • David R. Maish

80. Sustitución total en la cadera compleja: lado femoral .. 1059
 Andrew H. Glassman

81. Fracturas de cadera tratadas mediante artroplastia 1086
 Brett R. Levine • Patrick A. Meere
 Paul E. Di Cesare • Joseph D. Zuckerman

82. Manejo de las fracturas periprotésicas 1107
 Victor T. Jando • Patrick J. Duffy
 Bassam A. Masri • Clive P. Duncan

83. Manejo del trocánter ... 1127
 Jeffrey D. Yergler • Craig J. Della Valle
 Craig Silverton • Aaron G. Rosenberg

Infección

84. Infección: etiología, profilaxis y diagnóstico 1151
 William G. Hamilton • James P. McAuley

85. Infección: recambio en un tiempo 1164
 Peter R. Kay • Anil Gambhir

86. Artroplastia de recambio en dos tiempos en el tratamiento de la artroplastia total de cadera infectada 1174
 Andrew D. Toms • Bassam A. Masri
 Clive P. Duncan • Eduardo A. Salvati
Contenido

87. Implantes cargados de antibióticos.............1186
 Kevin L. Garvin • Craig R. Mahoney

88. Uso racional de los antimicrobianos..........1194
 Barry D. Brause

Sección VII • Revisión de la artroplastia total de cadera

89. Planificación preoperatoria de la revisión de la artroplastia de cadera...... 1200
 Sanjeev Agarwal • Andrew A. Freiberg
 Harry E. Rubash

90. Evaluación de la sustitución total de una cadera dolorosa.......................... 1228
 Richard E. White Jr. • Michael J. Archibeck

91. Extracción de componentes y cemento1236
 William J. Hazack • Frazer A. Wade

Revisión del componente acetabular

92. Revisión de la artroplastia total de cadera: componentes acetabulares no cementados.......................... 1254
 Daniel J. Berry

93. Nuevos conceptos en la revisión de la reconstrucción acetabular.............. 1264
 R. Michael Meneghini • David G. Lewallen
 Arlen D. Hanssen

94. Indicaciones, técnica y resultados de los aloinjertos estructurales en la artroplastia de revisión del acetábulo 1280
 Allan E. Gross • Stuart Goodman

95. Revisión del componente acetabular: injerto impactado............................... 1289
 B. Willem Schreurs • Tom J. J. H. Slooff
 Pieter Buma • Nico Verdonschot
 Jean W. M. Gardeniers

96. Revisión del componente acetabular: cotilos alargados y a la medida.............. 1299
 Michael J. Christie • David K. DeBoer
 Martha F. Brinson • J. Craig Morrison

Revisión del componente femoral

97. Revisión del componente femoral: revestimientos totales......................... 1307
 Scott M. Sporer • Wayne G. Paprosky

98. Revisión del componente femoral: modularidad.. 1317
 John W. Barrington • Andrew A. Freiberg
 Harry E. Rubash

99. Aloinjertos masivos e intercalares... 1325
 Roger H. Emerson, Jr.

100. Revisión del componente femoral: revestimiento poroso proximal.............. 1336
 David S. Hungerford • Michael A. Mont

101. Revisión del componente femoral: cemento... 1340
 John J. Callaghan • Michael R. O’Rourke
 Richard C. Johnston

102. Revisión del componente femoral: injerto impactado................................... 1351
 Graham A. Gie • John A. F. Charity
 Tony D. Lamberton • A. John Timperley

103. Revisión del componente femoral: mejoras con la hidroxiapatita............... 1359
 Rudolph G. T. Geesink
 Nicolette H. M. Hoefnagels

104. Revisión de la técnica de Wagner: vástago... 1370
 Paul M. Boehm

105. Tratamiento quirúrgico de la lisis femoral... 1379
 Peter G. Sultan • David W. Manning
 Kelly J. Hendricks • Raj K. Sinha
 Harry E. Rubash

106. Tratamiento quirúrgico de la osteólisis en la cavidad................................. 1387
 Peter P. Chiang • Dennis W. Burke
 Harry E. Rubash

107. Conversión a artroplastia total de cadera.. 1395
 Barrett S. Brown • Michael H. Huo

108. Rehabilitación... 1407
 Michael C. Munin • Cynthia W. Majerske

Cirugía mínimamente invasiva

109. Abordaje posterior para la artroplastia total de cadera con cirugía mínimamente invasiva.............................. 1414
 Laurence D. Dorr • Cambize Shahrdar

110. Artroplastia total de cadera mínimamente invasiva: técnica de dos incisiones........ 1424
 Richard A. Berger

111. Artroplastia total de cadera con mínima incisión: abordaje anterolateral........ 1432
 Sridhar M. Durbhakula
 Richard A. Berger • Andrew A. Freiberg

112. Complicación de la artroplastia total de cadera con mínima incisión......... 1436
 F. Bottner • Thomas P. Sculco
Artritis séptica

Michael R. O’Rourke • Marnold T. Berman • Louis Quartararo

ETIOLOGÍA

Mecanismo de infección

La artritis séptica de cadera es más frecuente en la edad pediátrica en parte como consecuencia de la arquitectura vascular única del fémur proximal. A diferencia de los adultos, la sepsis articular en el paciente anatómicamente inmaduro es habitualmente el resultado de una osteomielitis hematogena de la metáfisis que se extiende a la articulación a través de comunicación local. Las arteriolas terminales metafisarias en asa cerrada tienen un flujo lento y hacen que esta zona sea susceptible al depósito de bacterias (Fig. 39-1). La cadera del adulto es más resistente a esta forma hematógena de infección después del cierre de la fisis y las anastomosis entre los vasos metafisarios y epifisarios (v. Fig. 39-ID).

La diseminación hematogena, aunque menos frecuente en adultos, sigue siendo la ruta más habitual de infección de cadera. Los orígenes habituales de la infección son la bacteriemia a partir de una infección urinaria, neumonía, diverticulitis, endocarditis e infecciones cutáneas (8). La ruta de la diseminación hematogena de las bacterias en la pelvis del adulto es habitualmente a través de la sinovia. La bacteria en la sangre se deposita directamente en las abundantes arcadas y capilares de la membrana sinovial.

Además de la bacteriemia como fuente de la diseminación hematogena, el flujo venoso retrógrado también puede conducir al depósito bacteriano en la cadera. El retorno venoso normal de la cadera fluye a las venas de Batson alrededor de vejiga, recto, próstata y útero (Fig. 39-2) (83). El plexo de Batson es un sistema venoso sin válvulas que puede permitir el flujo retrógrado con las maniobras de Valsalva. Este flujo retrógrado predispone a la cadera al depósito bacteriano a partir de estos orígenes pélvicos.

Se puede producir la inoculación directa en la articulación de la cadera como consecuencia de traumatismos y procedimientos diagnósticos y terapéuticos. La artrografía, la aspiración de cadera y la inyección de corticoides son las causas habituales. La punción de la vena femoral, cuando se aspira sangre o durante la angiografía, puede acompañarse de la punción inadvertida de la cápsula de cadera (31,68,76). Las heridas por arma de fuego también son responsables de la siembra bacteriana a partir de estos orígenes pélvicos.

La extensión a partir de focos próximos o distantes puede ser también un problema añadido en el diagnóstico diferencial cuando se evalúen y traten estos pacientes.
tiene su parte más delgada anteriormente, entre los ligamentos iliofemoral y pubofemoral y es proclive a la diseminación de bacterias a través de este punto. Por otra parte, la bur- sa del iliopsoas comunica directamente con la articulación de la cadera en el 15% de la población general y la infección de dicha bursa a partir de abscesos o infecciones en la proximidad tiene como consecuencia una sepsis de cadera (Fig. 39-3) (4,76,79). Otras bursas que parecen comunicar con la articulación de la cadera son la bursa del trocánter mayor y la isquiotrocántrea (75). La infección alrededor de estas bursas puede ocasionar infecciones de cadera.

Otros orígenes en la proximidad de la cadera son lesiones por decúbito en la piel (8,53), fracturas pélvicas asociadas con fisuras rectales (55), lesiones genitourinarias (18), lesiones ureterales después de la inserción de dilatadores (90), enfermedad de Crohn con fistulas gastrointestinales-capsulares (29,72) y diverticulitis perforada (59).

Microbiología

El *Staphylococcus aureus* es la causa de mayor prevalencia de artritis séptica de cadera, siendo el responsable del 40 al 75% de los casos (8,60). El siguiente germen por frecuencia es el *Streptococcus* spp. (32,49,61,73,76). El gonorrea, aunque la causa más frecuente del resto de las articulaciones, rara vez afecta a la articulación de la cadera (2,50,69,78). Los bacilos gramnegativos son patógenos de creciente frecuencia y dan cuenta del 12% de los casos de sepsis en alguna serie (66). Entre estos organismos destacan la *Pseudomonas* spp., *Escherichia coli*, *Salmonella* spp., *Klebsiella* spp., *Enterobacter* spp. y *Proteus* spp. (3,11,67,70,76). Cuando se producen, estos microorganismos se asocian a un mal pronóstico. Otros patógenos habituales son el *Haemophilus influenzae* (76), *Campylobacter* spp. (41,88), *Listeria* spp. (81) y *Brachymella* spp. (20). Las bacterias anaerobias, como el *Bacteroides fragilis*.
(58) y el _Bacteroides melaninogenicus_ (82), entre otros, se aislan con creciente frecuencia gracias a mejores técnicas de cultivo y a la mayor incidencia de inmunosupresión en la población, y explican menos del 5% de todas las articulaciones sépticas (76).

El _Mycobacterium tuberculosis_ es raro en las sociedades modernas, aunque todavía está creciendo con la reaparición de la tuberculosis pulmonar en los pacientes inmunocomprometidos. Las infecciones atípicas por el _Mycobacterium_ son extremadamente raras (76). Recientemente se han publicado otras infecciones oportunistas, como las ocasionadas por _Coxiella burnetii_ (19), _Nocardia asteroides_ (64), _Mycoplasma_ (56,87) y _Kingella kingae_ (21,45,92).

Las infecciones fúngicas de la cadera casi siempre se deben a la _Candida_ spp. (74,89), pero también se han observado _Cryptococcus_ (12) y el _Coccidioides_ (76). Estas infecciones se contraen por extensión a partir de focos próximos más que por vía hematogena, que es la forma más habitual de las infecciones bacterianas.

Las infecciones por espiroquetas como el _Treponema pallidum_ (sífilis) o la _Borrelia burgdorferi_ (enfermedad de Lyme) también pueden producirse en la cadera. El treponema pálido habitualmente cursa con destrucción de la articulación de la cadera de forma indirecta por artrropatía neuropática asociada a la sífilis terciaria (76).

Las infecciones por parásitos se han comunicado recientemente en la literatura médica extranjera y se deben a esquistosomiasis (28) y equinococosis (39).

Los virus también pueden cursar con sinovitis transitoria con síntomas similares a la sepsis articular. La infección es autolimitada en la mayoría de los casos y no requiere tratamiento (25,52).

FISIOPATOLOGÍA

La membrana sinovial es un tejido conectivo muy vascularizado y permeable que cubre la articulación. La ausencia de una membrana limitante capilar explica su elevada permeabilidad. El ultrafiltrado del plasma a través de estos capilares origina el líquido sinovial normal, que proporciona nutrientes y extrae los desechos del cartílago articular. La interrupción en la producción normal de líquido y el flujo de éste líquido pueden ser desastrosos, ocasionando la destrucción del cartílago y la articulación. Los condrocitos juegan un papel importante en la defensa frente la infección. Los condrocitos artulares han demostrado que producen proteína defensina cuando se enfrentan a organismos gramnegativos (86).

Los organismos bacterianos que se desplazan por el torrente circulatorio pueden alojarse en la sinovia y entonces penetrar en la articulación. Una sinovia lesionada aumenta la susceptibilidad de la articulación frente a la infección hematogena. Una vez que están en la articulación, las bacterias proliferan con rapidez, se produce una infiltración celular inflamatoria, formación de inmunocomplejos y exudados inflamatorios fibrinosos. La fibrina se adhiere al cartílago articular, interrumpe el intercambio nutricional y también pueden aislar islotes de infección. La reacción inflamatoria ocasiona la producción de enzimas proteolíticas. La interrupción del intercambio normal de nutrientes y desechos, junto con la formación inflamatoria de enzimas proteolíticas, destruye el cartílago articular. El hueso subcondral expuesto es susceptible a la osteomielitis, en especial en casos con osteonecrosis o diagnóstico retrasado. La cápsula articular está atacada del mismo modo por enzimas y se debilita, lo que resulta en la formación de un absceso en el tejido blando. En raras ocasiones la cadera se luxa o subluxa como consecuencia de la sepsis (60). Pueden formarse adhesiones dentro de la articulación, que derivan en fibrosis, osificación y anquilosis de la articulación (76).

Los organismos no piógenos (p. ej., micobacterias y hongos) inducen diversas secuencias de eventos que ocasionan la destrucción articular. La reacción granulomatosa se produce en...
retroversión o varo debido a un componente aflojado y una ex
tensa anteversión de un fémur displásico son ejemplos de ello.
En el tipo V, los canales femorales son estenóticos (Fig. 59-19).
Los casos de interrupción femoral o fractura se denominan ti-
opio VI (Fig. 59-20): esta parte del sistema es exhaustiva, aun-
que no da cuenta de casos de mal alineamiento, estenosis o
fractura, y de la coexistencia de pérdidas óseas cavitarias y
segmentarias.

En el siguiente apartado de la clasificación los defectos
se definen por su localización vertical junto al fémur. El ni-
vel 1 llega hasta la parte inferior del trocánter menor; el
nivel 2 se extiende 10 cm distal al final del nivel 1. Cualquier
defecto distal al nivel 2 es un nivel 3 (Fig. 59-15A). Esta me-
dida arbitraria es simple de recordar, pero no da cuenta de los
cambios en la ubicación del istmo en pacientes extremada-
mente bajos o altos.

Por último, la gradación en la integridad del hueso hués-
ped se realiza en el momento de la cirugía (Tabla 59-6). El
grado 1 de hueso implica contacto pleno del hueso con la
prótesis y no requiere injerto adicional. El grado 2 de calidad ósea
proporciona una fijación estable, pero no existe un
completo contacto entre el hueso y la prótesis. Se recomien-
da injerto triturado para rellenar los huecos de contacto. El
grado 3 de hueso requiere injerto de superficie por su inca-
cpacidad para soportar una prótesis aislada. Este sistema es
exhaustivo, permite planificación intraoperatoria y correla-
ciona las evaluaciones preoperatorias con las intraoperatori-
as. No abarca los casos raros que requieren megaprótesis o
reconstrucción de APC. Al igual que los sistemas de Chan-
dler y Penenberg y Paprosky, la clasificación de la AAOS se
ha criticado por su complejidad (66). Los diversos estadios
para el análisis y el número de subtipos en cada uno resultan
difíciles de recordar.

Al igual que con la descripción de los déficits acetabula-
res, Chandler y Penenberg proporcionan de nuevo una expli-
cación exhaustiva de los defectos más habitualmente encor-
arterial media ≤50 mmHg) para ayudar a conseguir un lecho esponjoso acetabular seco que permita la intrusión del cemento durante la presurización. Después de la capsulotomía trapezoidal, con liberación de los rotadores externos cortos y la liberación del cuadrado femoral, se coloca un retractor de Aufranc justo por debajo del ligamento transverso a nivel del foramen obturador. La movilización femoral anterior se mejora con una liberación parcial de la inserción del tendón del glúteo mayor, con la liberación de la cabeza del recto femoral reflejada y la excisión del labrum.

Debe prestarse atención a identificar y preservar el ligamento transverso, que ayuda a la contención y presurización del cemento. Un retractor en C curvo se coloca por delante, llevando al fémur hacia delante y fuera del campo de visión. Se coloca una aguja de Steinmann en la parte superior para retraer el músculo glúteo medio. La exposición se completa con un retractor estrecho de Hohmann con ángulo de 90° colocado en el isquion en el espacio entre la cápsula y el resto labral.

Preparación del hueso

El fresado circunferencial comienza de forma escalonada hasta que se observe el enrojecimiento del sangrado del lecho esponjoso tanto en la columna posterior como en la anterior, cuando el pubis y la tuberosidad isquiática coinciden en la pelvis. La medialización del manto interno se evita para poder preservar el hueso esponjoso medial (Fig. 63-1). Un ajuste de prueba utilizando un dispositivo hemisférico permite la optimización en la orientación (40° de apertura lateral y 15° de anteverisión) y la valoración del manto de cemento (la prueba debe girar fácilmente entre dos dedos) (Fig. 63-2).

Se taladrarán múltiples agujeros en la cúpula superior del hueso esponjoso de la columna posterior y se crearán dos grandes cavidades en el pubis e isquion para facilitar un macroin-
Figura 63-4. Lecho esponjoso seco después de la preparación.

Figura 63-5. Cemento pastoso antes de su inserción en el lecho acetabular seco.

Figura 63-6. Presurización del cemento con jeringa de bulbo.

Figura 63-8. Elevación del cemento fuera de la lágrima.

terbloqueo (Fig. 63-3). Se utiliza un lavado pulsátil para extraer restos de sangre y desechos grasos y se seca el lecho con esponjas y presión (Fig. 63-4). Se deja que el cemento caliente alcance la consistencia pastosa durante la fase de fraguado (Fig. 63-5). Se introduce entonces el cemento en el lecho esponjoso óseo y se presuriza mediante una jeringa de bulbo especial para mejorar el microinterbloqueo mediante la intrusión del cemento (Figs. 63-6 y 63-7). Hay que tener la precaución de extraer el exceso de cemento de la lágrima inferior antes de insertar la cúpula totalmente de polietileno (Fig. 63-8).

Implante de la prótesis

Los parámetros habituales de diseño permiten que componentes de paredes altas y muy elevados enlaces cruzados de polietileno con 28 mm de diámetro interno se puedan emparejar con cabezas femorales de cromo-cobalto. La cúpula se
nos cortos, se generaba una fuerza compresiva sobre la osteotomía, que evitaba la migración y potenciaba una rápida unión (v. Fig. 83-2). Después de la osteotomía, el fragmento resecado se retornaba al perfil y quedaba hacia adelante, y la cadera se luxaba en una dirección posterior. En una revisión de 222 artroplastias primarias, de las que 120 lo fueron con técnicas de alambre para fijación estándar del trocánter y 102 utilizaron pernos e injerto óseo, las tasas de no-unión fueron del 4,3 y 2,5%, respectivamente (31).

Fulkerson y cols. modificaron ligeramente esta técnica reflejando el glúteo medio y menor lateralmente, desarrollando un biplano entre estos dos músculos y la cabeza anterior del origen del vasto lateral (37). La osteotomía se realiza entonces a partir de este abordaje anterior, dejando los músculos glúteo y vasto fijados al trocánter junto con los rotadores externos cortos. Los autores entienden que retraer el fragmento trocantéreo y sus músculos fijados posteriormente en lugar de anteriormente, como describió English, permite acceder al canal femoral con mayor facilidad y precisión.

La necesidad de una mayor exposición durante la cirugía de revisión se hizo evidente en los años ochenta y comenzaron a surgir técnicas para facilitarlo. Glassman y cols. describieron la osteotomía trocantérea deslizante o deslizamiento trocantéreo anterior (39). Esta técnica es parecida a la descripción original de English, pero los rotadores exteriores se dividen cerca de su inserción y se respetan para su fijación final después de la reaproximación del trocánter. Glassman y cols. refirieron inicialmente 90 artroplastias de cadera (88 revisiones) y observaron una tasa de no-unión del 10%. Entre los nueve pacientes con falta de unión trocantérea, se observó una migración cefálica en siete (promedio de 7 mm, rango 2-26 mm). Otras siete caderas más presentaban rotura del alambre. Ningún paciente presentó falta de unión a pesar de ser un origen de importante de dolor y ninguno requirió nueva fijación del trocánter. En el 28% de los pacientes se observó una sacudida abductora (23 caderas). No se produjeron luxaciones precoces o tardías después de un seguimiento medio de 21 meses (rango 1-3 años). Una publicación más reciente de Glassman y cols. (38), con 129 procedimientos de revisión en los que se realizaron osteotomías con deslizamiento trocantéreo, demostraron una tasa de no-unión del 14% (18 pacientes). En tres casos se produjeron más de 2 cm de migración. También se observó una incidencia del 21% de rotura de alambres y una tasa del 5% de luxación postoperatoria. La persistencia de la sacudida abductora se apreciaba en el 19% de los pacientes.

Lindgen y Svenson, utilizando la misma técnica en 189 artroplastias totales de cadera (39 revisiones) observaron un 2% de incidencia de no-unión y solamente un caso de luxación postoperatoria (58). Romero y cols. realizaron un estudio de 22 intervenciones de revisión consecutivas con esta osteotomía por deslizamiento trocantéreo anterior y encon-
traron un aumento significativo del momento del brazo abductor y de la longitud del músculo, mejorando los mecanismos abductores (82). Entendieron que esto suponía una protección frente a la migración trocantérea.

Las ventajas de esta técnica son una amplia exposición del fémur proximal y acetábulo y su relativa sencillez. La continuidad del vasto lateral con el glúteo medio ofrece un margen añadido de seguridad frente a la migración trocantérea en caso de producirse una falta de unión.

Técnica

Se recurre a un abordaje estándar posterior, centrado sobre el trocánter mayor. La fascia lata se divide en colgajos anterior y posterior y el abordaje sigue proximalmente el curso de las fibras del glúteo mayor. El intervalo entre el glúteo medio y el tensor de la fascia lata se desarrolla anteriormente, exponiendo la cápsula articular en la que se practica una incisión. Con el fémur en rotación interna, se identifican el glúteo medio y menor justo por encima del tendón piriforme y se hace un aislamiento romo de toda la masa muscular del glúteo medio desde la cápsula de cadera subyacente, en dirección posterior y anterior. Los rotadores externos se aíslan entonces, se marcan y dividen. Después se retraen en dirección posterior. Se practica una incisión en el vasto lateral en un punto a 10-15 cm distal al surco del vasto y 1 cm por delante al septo intermuscular lateral. Este músculo se eleva a partir del subperiostio desde el tallo anterior y lateral del fémur y se mantiene hacia delante con el retractor. La osteotomía se efectúa con una sierra oscilante, comenzando justo posterolateral a la inserción del glúteo medio, de forma que se extirpa una pieza de 1 cm de grosor del trocánter proximalmente y en reducción hasta 0,5 cm distal al pliegue del vasto (Fig. 83-3). El glúteo menor debe quedar fijado al fémur pro-

Figura 83-2. A, B. Exposición posterior de la articulación de la cadera, conservando las porciones tendinosas del glúteo medio y vasto lateral intacto (McFarland). C. Dejando los músculos glúteo (G) y vasto (V) fijados se produce el componente medial (X), que ejerce una fuerza compresiva en el plano de la osteotomía (English).
tonces un pequeño saliente en el componente, bien con un punzón de metal endurecido o con un taladro de corte de metal de alta velocidad. Entonces se utiliza el punzón para llevar el vástago fuera del canal. Los dos pasos se repiten las veces que sea necesario hasta que el extremo distal se pueda desplazar. Esta técnica puede no ser aplicable a vástagos no cementados que se fracturan, ya que el fragmento distal puede estar bien fijado por endocrecimiento. Sin embargo, la extracción es posible utilizando la técnica descrita en la sección de la extracción de componentes femorales no cementados (Fig. 91-23).

El abordaje más útil para crear una ventana femoral es utilizar una osteotomía trocantérea ampliada en la forma ya descrita, con la parte distal de la osteotomía con base justo por debajo del nivel de la fractura del componente femoral. Después de la exposición, el vástago distal puede extraerse en la misma forma escalonada que fue descrita por Moreland y cols. (29).

TÉCNICAS DE EXTRACCIÓN DEL CEMENTO

Cemento con cemento

Antes de acometer la tarea potencialmente formidable de extraer el cemento, es importante establecer si es realmente necesario. Una alternativa es recementar un componente femoral dentro del manto de cemento existente. Varios autores han utilizado esta técnica (1,23,26) con excelentes resultados. El recementado del componente femoral dentro del manto retenido de cemento deberá considerarse solamente en las circunstancias en las que la interfaz cemento-hueso y el manto de cemento están próximas al ideal. Sin embargo, cuando no es así, pueden considerarse otras excepciones como el caso en que la extracción del manto de cemento pudiera mermar considerablemente la masa ósea existente, lo cual resulta especialmente problemático en casos de huesos osteopénicos adelgazados (Fig. 91-28). Las situaciones en las que se deba tener especialmente presente el planteamiento ce-
mento sobre cemento son las revisiones por inestabilidad o discrepancia de longitud de las piernas, en las que el cemento femoral es adecuado. Además, en la revisión acetabular aislada asociada con un componente femoral no modular, puede ser necesaria una revisión femoral para ajustar la longitud de la extremidad, la estabilidad o el tamaño de la cabeza femoral. Además, la necesidad de una exposición ampliada puede requerir la extracción del componente femoral (sin la extracción del manto de cemento femoral). Esta técnica también resulta útil en componentes femorales fracturados con mantos de cemento adecuados o para desuniones aisladas en la interfaz cemento-prótesis.

Aunque puede utilizarse la prótesis original (1), suele ser necesaria la modificación de la superficie del manto de cemento para ajustar un componente femoral nuevo en el viejo manto de cemento. Después de una exposición adecuada del fémur proximal, se retira la prótesis original y se inspecciona el manto de cemento para confirmar que se conserva una unión excelente cemento-hueso. Pueden aceptarse pequeños déficits proximales en el manto de cemento, que requerirán una nueva preparación para asegurar una interfaz correcta cemento-hueso. El cemento proximal se modifica utilizando un taladro de alta velocidad para remodelar el manto de cemento de forma que ajuste el abocinamiento metafisario de la nueva prótesis. El manto de cemento distal puede ampliarse o alargarse según sea necesario para ajustar el nuevo componente. Aunque pueden utilizarse brocas de alta velocidad, la tasa de perforaciones puede ser inaceptable.
TABLA 93-1

<table>
<thead>
<tr>
<th>Clasificación de defecto acetabular de Paprosky</th>
<th>Tipo de estructura de aumento acetabular de metal trabecular</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (borde acetabular, columna anterior y posterior intactas y de soporte, defectos pequeños, focales y contenidos)</td>
<td>Soporte de revisión (soporte de revisión de titanio o metal trabecular) sin aumento ± injerto de partículas óseas</td>
</tr>
<tr>
<td>2A (migración superomedial moderada, >50% de contacto con el hueso huésped)</td>
<td>Soporte de revisión (soporte de revisión de titanio o metal trabecular) sin aumentos ± injerto de partículas óseas</td>
</tr>
<tr>
<td>2B (migración superolateral moderada, >50% de contacto con el hueso huésped)</td>
<td>Estructura tipo 1: revisión de soporte de metal trabecular ± aumento superolateral, dependiendo de la estabilidad de la cúpula</td>
</tr>
<tr>
<td>2C (migración medial aislada, medial a la línea de Kohler, borde periférico intacto)</td>
<td>Soporte de revisión (soporte de revisión de titanio o metal trabecular) sin aumento + injerto medial de partículas óseas</td>
</tr>
<tr>
<td>3A (migración superolateral grave, <50% de contacto con el hueso huésped, estabilidad inadecuada, defecto <1/2 de la circunferencia)</td>
<td>Estructura tipo 2: soporte de revisión de metal trabecular con aumento(s) grande(s) superolateral; considere cúpula-malla si la fijación mecánica sigue poco sólida</td>
</tr>
<tr>
<td>3B (migración superomedial grave, <50% de hueso huésped, estabilidad inadecuada, >1/2 circunferencia, medial a la línea de Kohler, riesgo de discontinuidad pélvica)</td>
<td>Estructura tipo 3: soporte de revisión de metal trabecular como «base» colocada superior y/o medial, considerar cúpula-malla si la fijación mecánica sigue siendo poco sólida</td>
</tr>
<tr>
<td>Discontinuidad pélvica</td>
<td>Soporte de revisión de metal trabecular con placa en la columna posterior frente a estructura cúpula-malla, o ambas</td>
</tr>
</tbody>
</table>

Figura 93-5. Ilustraciones que muestran las proyecciones sagital (A) y coronal (B) de un defecto leve-moderado acetabular manejado correctamente mediante una estructura de aumento modular tipo 1 (C).
y lateral sin el necesario contacto hueso-huésped para la estabilidad mecánica (32). El dispositivo de aumento del tipo 3 (Fig. 93-8A-C) cuenta con la utilización de varios aumentos como «bases» estructurales para proporcionar estabilidad mecánica al componente hemisférico en defectos graves craneales y/o mediales que se corresponden con defectos acetabulares tipos 2A y 3B de Paprosky.

Si la pérdida y deficiencia ósea es tan grave como para que no se pueda conseguir estabilidad mecánica con el uso de cúpulas hemisféricas y aumentos modulares de tántalo poroso, podrá recurrirse a una cúpula-malla integrada. Las mallas convencionales antiprotrusión no proporcionan fijación biológica, sino que son simples dispositivos estructurales que dependen de múltiples tornillos para la fijación a largo plazo. Por lo tanto, no son raros después, repetidos con ciclos de carga en el tiempo, el aflojamiento y la rotura.

El dispositivo integrado cúpula-malla permite que el soporte poroso de MT contacte con el hueso huésped disponible y, aunque sea insuficiente para la estabilidad mecánica, consigue la fijación a través del inserto de la malla antiprotrusión que encaja en el ilion e isquion a lo largo del defecto (v. Fig. 93-4A-F). Se consigue así la estabilidad mecánica aportada por la fijación ilioisquiática, al tiempo que conserva el potencial biológico para el endocrecimiento del hueso.

Figura 93-6. A. Aumento superolateral en un «refuerzo flotante» o configuración tipo 1 con fijación rígida al ilion con tornillos. B. Ajuste intraoperatorio por fricción de un soporte de revisión hemisférico dentro del acetábulo suplementado con un aumento superolateral. C. Radiografía postoperatoria de la estructura del tipo 1.
lllos (Fig. 94-8D). Si es posible, se insertan uno o dos tornillos a través de la parte inferior de la celda hasta la columna acetabuloidea posterior adyacente al isquion.

Luego un cotilo de polietileno, 2 o 3 mm más pequeño que el diámetro interno de la celda, se cementa en la celda en la posición correcta, sin tener en cuenta la posición de la celda (Fig. 94-8E). Si el cotilo se cementa para acomodarse a la posición de la celda, su posición sería demasiado vertical y posiblemente demasiado retrovertida.

Antes de cementar el cotilo, debe llevarse a cabo una reducción de prueba para evaluar su posición. También se evalúa la longitud de la pierna utilizando una guía estabilizadora de referencia, que se inserta en la cresta ilíaca durante la exposición.

En el postoperatorio, al paciente se le limita la carga de peso durante los siguientes 3 meses. Postoperatoriamente, se le administran antibióticos profilácticos durante 10 días, por vía intravenosa durante 5 días y por vía oral durante 5 días.

Resultados

En 33 caderas de 32 pacientes con injertos mayores de columna y un seguimiento mínimo de 5 años (media de 7,1), se actuó con éxito en 18 caderas de 17 pacientes, con una tasa de éxito del 55% (4). En este estudio se consideró éxito un incremento en la puntuación de la cadera de al menos 20 puntos, un cotilo estable con un aloinjerto unido y estructuralmente intacto, y sin requerir operaciones adicionales relacionadas con el acetábulo. Seis caderas de seis pacientes precisaron operaciones complementarias para aflojar el cotilo, pero los injertos estaban intactos y unidos. Una cadera precisó una exploración debido a una lesión en el nervio ciático. Estas caderas fueron consideradas éxitos parciales porque no se necesitaron injertos adicionales. Por lo tanto, la tasa absoluta de éxito fue del 76%. Ocho de las 33 caderas requirieron intervenciones adicionales debido a fracasos en los injertos; siete sufrieron una resorción grave y una se infectó (4).

En este estudio, siete de las ocho reconstrucciones de defectos de tipo IV que se realizaron con un anillo de protección tuvieron éxito, y solo se produjo un fracaso debido a una infección (4). En un estudio más reciente, examinamos los resultados de 12 pacientes con defectos de tipo IV reconstruidos con injertos estructurales protegidos por un anillo. Tres pacientes fueron sometidos a una artroplastia de resección, uno por resorción del injerto y dos por luxación recidivante. Se tuvo éxito en nueve pacientes con 10 reconstrucciones (77%), con un seguimiento medio de 10,5 años (Fig. 94-9) (14).

Existe una alta incidencia de complicaciones asociadas al uso de celdas. Esta alta incidencia se debe, en parte, a la complejidad de toda reconstrucción que precise una celda, pero también se debe, en parte, a las propiedades biomecánicas y biomateriales de las celdas.

Recientemente hemos examinado las complicaciones asociadas al uso de celdas (7). Se analizaron 61 casos con un
Capítulo 94 • Aloinjertos estructurales en la artroplastia de revisión acetabular

Figura 94-8. A. Un aloinjerto acetabular ha sido fijado con dos tornillos esponjosos. B. Se inserta un calibrador de profundidad en el isquion para confirmar la posición. C. Los rebordes superiores de la celda habitualmente necesitan doblarse hacia el ilion. D. La celda se ha encajado en el isquion, y hay tornillos en los rebordes superiores y la cúpula. E. Se cimenta un cotilo de polietileno en la celda con su posición vuelta y la abducción ajustada independientemente de la posición de la celda. (Reproducido con el permiso de Zimmer Inc.)

seguimiento medio de 4,6 años. Fueron revisiones acetabulares complejas, en las que en 48 de los 61 casos se requirió un aloinjerto estructural y en el resto aloinjertos triturados. Las complicaciones que encontramos son características, como las señaladas por otros autores, y son representativas de los problemas de los anillos. En esta serie, ninguna de las complicaciones se asoció con el uso de aloinjerto óseo estructural o triturado, puesto que todos los injertos sanaron sin incidentes y sin signos radiográficos de resorción o fractura. Veinte de los 61 pacientes sufrieron complicaciones relacion...