DESCRIPTION:
Recent advances in early detection and cancer therapeutics have revolutionized the field of Oncology. Cancer is no longer a death sentence. It is a disease that can be cured, or in many instances converted into a chronic condition. The end result is a new cohort of patients with sufficient survival to develop the cardiovascular complications of their cancer treatment.

These cardiovascular complications are of paramount importance, as they represent the number one cause of death for cancer survivor, and they need a multidisciplinary approach. Cardiologists should be essential members of these multi-disciplinary teams, assisting them to provide coordinated and cost-effective cardiovascular monitoring before, during and after cancer treatment. The ultimate goal is the selection of the oncologic regimen that would achieve the highest possible rate of cure or remission, with the lowest possible rate of treatment withdrawals and cardiovascular side effects.

CONTENTS:
1. **Cancer Epidemiology. Tumor Biology. Cancer Genomics. Therapeutic Approach to Cancer**
 1.1. Cancer Epidemiology
 1.2. Tumor Biology
 1.3. Cancer Genomics
 1.4. Therapeutic Approach to Cancer
 1.5. Cancer Medicine
 1.6. Cancer and Society
2. **Definition and Classification of Cancer Therapeutics-Related Cardiac Toxicity and Dysfunction. Mechanisms of Cardiac Toxicity**
 2.1. Introduction
 2.2. Definition of Cancer Therapeutics-Related Cardiac Dysfunction
 2.3. Classification of Cancer Therapeutics-Related Cardiac Dysfunction
 2.4. Mechanisms of Cardiac Toxicity
 2.5. Conclusions
3. **Cardiac Dysfunction Secondary to Anthracyclines**
 3.1. Introduction
 3.2. Anthracyclines in Oncology
 3.3. Definition of Anthracycline-induced Cardiomyopathy
 3.4. Risk Factors for Anthracycline-induced Cardiomyopathy
 3.5. Pathology of Chronic Anthracycline-induced Cardiomyopathy
 3.6. Selection of Patients for Anthracycline Therapy
 3.7. Early Detection of Anthracycline-induced Cardiomyopathy
 3.8. Diagnosis of Anthracycline-induced Cardiomyopathy
 3.9. Prevention of Anthracycline-induced Cardiomyopathy
 3.10. Treatment of Anthracycline-induced Cardiomyopathy
 3.11. Other Chemotherapy Agents
 3.12. Conclusions
4. **Cancer Therapeutics-Related Cardiac Dysfunction Secondary to Tyrosine-Kinase Inhibitors: Monoclonal Antibodies and Small Molecule Tyrosine-Kinase Inhibitors**
 4.1. Introduction
 4.2. Monoclonal Antibodies
 4.3. Small Molecule Tyrosine-Kinase Inhibitors
 4.4. Conclusions
5. **Vascular Implications in Cancer Dissemination**
 5.1. Angiogenesis: a Critical Process for Tumor Growth, Progression and Dissemination
 5.2. Critical Players in Blood Vessel Maturation and Stabilization
 5.3. Lymphangiogenesis
 5.4. Anti-angiogenic Approaches in Cancer
 5.5. Conclusions
6. Radiation-Induced Heart Disease
6.1. Introduction
6.2. Frequency and Prevalence
6.3. Pathophysiology
6.4. Risk Factors
6.5. Challenges in Defining Volumes
6.6. Cardiotoxicity and Breast Cancer
6.7. Cardiotoxicity and Other Thoracic Tumors
6.8. Cardiotoxicity and Hodgkin Lymphoma

7. Use of Biomarkers in the Early Detection/Risk Stratification of Subclinical Left Ventricular Dysfunction in Patients Undergoing Cancer Therapy
7.1. The Role of Biomarkers as Diagnostic and Prognostic Tools in Cancer Therapy Associated Cardiotoxicity
7.2. Troponins
7.3. Brain-type Natriuretic Peptide
7.4. Emerging Biomarkers in Assessing Cancer Therapy Induced Cardiotoxicity
7.5. The Role of Biomarkers as Screening Tools to Aid in the Prevention of Cardiotoxicity
7.6. An Integrated Approach to Multiple Biomarkers and Imaging
7.7. Conclusions

8. Imaging Techniques in the Detection of Cancer Therapeutics-Related Cardiac Dysfunction: Standard Echocardiography
8.1. Introduction
8.2. Left Ventricular Ejection Fraction
8.3. Diastolic Function
8.4. Right Ventricular Function
8.5. Special Considerations in Radiotherapy
8.6. Echocardiography Monitoring Guidelines for Cancer Therapeutics-Related Cardiotoxicity
8.7. Conclusion

9. Imaging Techniques in the Detection of Sub-Clinical Left Ventricular Dysfunction
9.1. Introduction
9.2. Strain Imaging
9.3. Left Ventricular Torsion and Twist
9.4. Conclusions

10. Imaging Techniques in the Detection of Cancer Therapeutics-Related Cardiac Toxicity
10.1. Introduction
10.2. Equilibrium Radionuclide Angiography
10.3. Cardiac Magnetic Resonance Imaging

11. Myocardial Ischemia and Acute Coronary Syndrome in Cancer Patients
11.1. Introduction
11.2. Risk Factors and Pathophysiology
11.3. Diagnostic Criteria and Diagnostic Testing for Myocardial Ischemia and Acute Coronary Syndromes
11.4. Treatment of Acute Coronary Syndromes in Cancer Patients

12. Peripheral Arterial Disease in Cancer Patients
12.1. Introduction
12.2. Incidence
12.3. Etiology and Pathophysiology
12.4. Suggested Algorithm for Evaluation of Arterial Ischemic Events in Patients with Underlying Malignancy
12.5. Management
12.6. Outcome
12.7. Conclusions

13. Thrombosis, Coagulation and Cancer
13.1. Introduction
13.2. Causes Favoring Thrombotic Phenomena in Cancer Patients
13.3. Why do Cancer Cells Promote Platelet Activation?
13.4. Mechanisms Associated with Venous Thromboembolism
13.5. Biomarkers to Predict the Risk of Thromboembolic Events in Cancer Patients
13.6. Pharmacologic Prevention of Thrombo-coagulating Events in Cancer Patients
13.7. Genetic Alterations Related to Cancer and Risk of Thromboembolic Events

14. Management of Cardiac Insufficiency and Heart Failure in Cancer Patients
14.1. Introduction
14.2. Detection of Heart Failure in Cancer Patients
14.3. Adjustments to Chemotherapy in Patients with Heart Failure or Left Ventricular Dysfunction
14.4. Hypertension as a Precursor to Heart Failure
14.5. Survivors of Cancer Therapy (Post-treatment) and Risk of Heart Failure
14.6. Conclusions

15. Arrhythmias and Cardiac Devices in Oncology Patients
15.1. Introduction
15.2. Cardiac Arrhythmias
15.3. Cardiac Electrophysiologic Study
15.4. Cardiac Devices
15.5. Conclusions

16. Other Complications: Myocarditis, Pericardial Disease, Valvular Heart Disease