<table>
<thead>
<tr>
<th>Autor</th>
<th>Bilezikian</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISBN</td>
<td>9780123738844</td>
</tr>
<tr>
<td>Páginas</td>
<td>1900</td>
</tr>
<tr>
<td>Año</td>
<td>2008</td>
</tr>
<tr>
<td>Edición</td>
<td>3</td>
</tr>
<tr>
<td>Idioma</td>
<td>Ingles</td>
</tr>
<tr>
<td>Disponible</td>
<td>De 2 a 3 Semanas</td>
</tr>
<tr>
<td>Precio</td>
<td>325.00</td>
</tr>
<tr>
<td></td>
<td>308.75</td>
</tr>
</tbody>
</table>
DESCRIPTION:
Provides the most comprehensive, authoritative reference on the study of bone biology and related diseases. It is the essential resource for anyone involved in the study of bone biology. It is the most comprehensive, complete, up-to-date source of information on all aspects of bones and bone biology in one convenient source. It takes the reader from the basic elements of fundamental research to the most sophisticated concepts in therapeutics. Bone research in recent years has generated enormous attention, mainly because of the broad public health implications of osteoporosis and related bone disorders.
*Provides a "one-stop" shop. There is no need to search through many research journals or books to glean the information one wants it is all in one source written by the experts in the field.
*THE essential resource for anyone involved in the study of bones and bone diseases.
*Takes the reader from the basic elements of fundamental research to the most sophisticated concepts in therapeutics.
*Readers can easily search and locate information quickly as it will be online with this new edition.

CONTENTS:
Part I Basic Principles
A. Cell Biology
Chapter 1: Structure, Modeling and Remodeling of Bone / The Size and Shape of Bone as a Site of Metabolic Bone Activity
Chapter 2: Biomechanics of Bone
Chapter 3: Embryonic Development of Bone and the Molecular Regulation of Intramembranous and Endochondral Bone Formation
Chapter 4: Mesenchymal Stem Cells & Osteoblast Lineage
Chapter 5: Transcriptional Control of Osteoblast Differentiation and Function
Chapter 6: Wnt Signaling and Bone
Chapter 7: Sclerostin and Bone
Chapter 8: The Osteocyte
Chapter 9: Cells of Bone: Osteoplast Generation
Chapter 10: Osteoclast Function: Biology and Mechanisms
Chapter 11: RANK Signaling
Chapter 12: Regulating Bone Resorption
Chapter 13: Apoptosis in Bone Cells
Chapter 14: Skeletal Gene Expression in Nuclear Microenvironments

B. Biochemistry
Chapter 15: Type I Collagen: Structure, Synthesis, and Regulation
Chapter 16: Collagen Crosslinking & Metabolism
Chapter 17: Bone Matrix Proteoglycans & Glycoproteins
Chapter 18: Osteopontin
Chapter 19: Bone Proteinases
Chapter 20: Integrins and Other Cell Surface Attachment Molecules of Bone Cells
Chapter 21: Intercellular Junctions and Cell-Cell Communication in the Skeletal System

C. Bone Remodeling and Mineral Homeostasis
Chapter 22: Histomorphometric Analysis of Bone Remodeling
Chapter 23: Phosphorus Homeostasis & Related Disorders
Chapter 24: Magnesium Homeostasis
Chapter 25: Metals in Bone: Aluminum, Boron, Cadmium, Chromium, Lead, Silicon, & Strontium
Chapter 26: Biology of the Extracellular Ca2+-Sensing Receptor

D. The Hormones of Bone
Chapter 27: Receptors for Parathyroid Hormone (PTH) and PTH-Related Protein
Chapter 28: Parathyroid Hormone - Molecular Biology
Chapter 29: Parathyroid Hormone-Receptor Interactions
Chapter 30: Actions of Parathyroid Hormone on the Vasculature and Cardiovascular System
Chapter 31: The Vascular and Cardiovascular Actions of PTH
Chapter 32: PTH and PTHrP Actions on Kidney and Bone
Chapter 33: Physiological Actions of Parathyroid Hormone and PTH-Related Protein
Chapter 34: Vascular, Cardiovascular and Neurological Actions of Parathyroid-Related Protein
Chapter 35: Vitamin D Nuclear Receptor (VDR) and Plasma Vitamin D-Binding Protein (DBP) Structures and Ligand Shape Preferences for Genomic and Rapid Biological Responses
Chapter 36: Vitamin D Gene Regulation
Chapter 37: Photobiology and Non-Calcemic Actions of Vitamin D
Chapter 38: Calcitonin Structure and Molecular Biology of the Calcitonin Receptor / Calcitonin Gene Family and Receptor Structure, Molecular Biology, and Effects
Chapter 39: Amylin and Calcitonin Gene-Related Peptide

E. Other Systemic Hormones That Influence Bone Metabolism
Chapter 40: Estrogens & Progestins
Chapter 41: The Pharmacology of Selective Estrogen Receptor Modulators
Chapter 42: Mechanisms of Estrogen Action in Bone
Chapter 43: Thyroid Hormone & Bone
Chapter 44: Clinical and Basic Aspects of Glucocorticoid Action in Bone
Chapter 45: Effects of Diabetes & Insulin on Bone Physiology
Chapter 46: Androgens:Receptor Expression and Steroid Action in Bone
Chapter 47: Kinins & Neuro-Osteogenic Factors
Chapter 48: Regulation of Bone Remodeling by Central and Peripheral Nervous Signals

F. Local Regulators
Chapter 49: Insulin-like Growth Factors and the IGF Binding Proteins: Implications for Bone Biology
Chapter 50: Platelet-Derived Growth Factor & the Skeleton
Chapter 51: Fibroblast Growth Factor (FGF) and FGF Receptor Families in Bone
Chapter 52: Vascular Endothelial Growth Factor and Osteogenic-Angiogenic Coupling
Chapter 53: Transforming Growth Factor-α
Chapter 54: Bone Morphogenetic Proteins and the Skeleton
Chapter 55: Bone Morphogenetic Protein Receptors & Actions
Chapter 56: Colony-Stimulating Factor-1
Chapter 57: Local Regulators of Bone: IL-1, TNF, Lymphotoxin, Interferon-?, IL-8, IL-10, IL-4, the LIF/IL-6 Family, and Additional Cytokines
Chapter 58: Prostaglandins & Bone Metabolism

Part II Molecular Mechanisms of Metabolic Bone Disease
Chapter 59: Skeletal Effects of Nitric Oxide: Novel Agent for Osteoporosis
Chapter 60: Molecular Basis of PTH Overexpression
Chapter 61: Familial Benign Hypocalciuric Hypercalcemia and Neonatal Primary Hyperparathyroidism
Chapter 62: Multiple Endocrine Neoplasia Type I
Chapter 63: Parathyroid Hormone-Related Peptide and Other Systemic Factors in Skeletal Manifestations of Malignancy
Chapter 64: Local Factors in Skeletal Malignancy
Chapter 65: Genetic Regulation of the Parathyroid Gland Development
Chapter 66: Jansen’s Metaphyseal Chondrodysplasia & Blomstrand’s Lethal Chondrodysplasia: Two Genetic Disorders Caused by PTH/PTHrP Receptor Mutations
Chapter 67: Diseases Resulting from Defects in the G Protein Gs
Chapter 68: Renal Osteodystrophy - Pathogenic Mechanisms and Therapeutic Options
Chapter 69: Osteogenesis Imperfecta
Chapter 70: Hereditary Deficiencies in Vitamin D Action
Chapter 71: Oncogenic Osteomalacia
Chapter 72: Osteopetrosis
Chapter 73: Hypophosphatasia: Nature’s Window on Alkaline Phosphatase Function in Humans
Chapter 74: Paget’s Disease of Bone
Chapter 75: Genetic Determinants of Bone Mass and Osteoporotic Fracture
Chapter 76: Pathophysiology of Osteoporosis
Chapter 77: Evaluation of Risk for Osteoporosis Fracture

Part III Pharmacological Mechanisms of Therapeutics
Chapter 78: Parathyroid Hormone
Chapter 79: Calcium
Chapter 80: Drugs Acting on the Calcium Receptor Calcimimetics and Calcilytics
Chapter 81: Bisphosphonates: Mechanisms of Action
Chapter 82: The Pharmacology of Estrogens in Osteoporosis
Chapter 83: Vitamin D & Analogs
Chapter 84: Estrogen Effects on Bone in the Male Skeleton
Chapter 85: Mechanisms of Exercise Effects on Bone Quantity and Quality

Part IV Methods in Bone Research
Chapter 86: Application of Transgenic Mice to Problems of Skeletal Bone
Chapter 87: Biochemical Markers of Bone Metabolism
Chapter 88: Methods and Clinical Issues in Bone Densitometry
Chapter 89: Controversial Issues in Bone Densitometry
Chapter 90: Macro and Micro Imaging of Bone Architecture